Condition Prediction for Existing Educational Facilities Using Artificial Neural Networks and Regression Analysis

Autor: Ahmed M. Hassan, Kareem Adel, Ahmed Elhakeem, Mohamed I. S. Elmasry
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Buildings, Vol 12, Iss 10, p 1520 (2022)
Druh dokumentu: article
ISSN: 2075-5309
DOI: 10.3390/buildings12101520
Popis: Infrastructural assets such as roads, bridges, and buildings make a considerable contribution to national economies. These assets deteriorate due to aging, environmental conditions, and other external factors. Maintaining the performance of an asset in line with rational repair strategies represents a considerable challenge for decision-makers, who may not pay attention to developing adequate maintenance plans or leave the assets unmaintained. Worldwide, organizations are under pressure to ensure the sustainability of their assets. Such organizations may burden their treasury with random maintenance operations, especially with a limited budget. This research aims to develop a generalized condition assessment approach to monitor and evaluate existing facility elements. The proposed approach represents a methodology to determine the element condition index (CI). The methodology is reinforced with an artificial neural network (ANN) model to predict the element deterioration. The performance of this model was evaluated by comparing the obtained predicted CIs with ordinary least squares (OLS) regression model results to choose the most accurate prediction technique. A case study was applied to a group of wooden doors. The ANN model showed reliable results with R2 values of 0.99, 0.98, and 0.99 for training, cross-validation, and testing sets, respectively. In contrast, the OLS model R2 value was 1.00. These results show the high prediction capability of both models with an advantage to the OLS model. Applying this approach to different elements can help decision-makers develop a preventive maintenance schedule and provide the necessary funds.
Databáze: Directory of Open Access Journals