Autor: |
Valery S. Shchesnovich |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-017-00044-8 |
Popis: |
Abstract For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|