Behavior Analysis of the New PSO-CGSA Algorithm in Solving the Combined Economic Emission Dispatch Using Non-parametric Tests

Autor: Milena Gajić, Sanela Arsić, Jordan Radosavljević, Miroljub Jevtić, Bojan Perović, Dardan Klimenta, Miloš Milovanović
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Applied Artificial Intelligence, Vol 38, Iss 1 (2024)
Druh dokumentu: article
ISSN: 08839514
1087-6545
0883-9514
DOI: 10.1080/08839514.2024.2322335
Popis: ABSTRACTThis paper proposes a new metahaeuristic algorithm named particle swarm optimization and chaotic gravitational search algorithm (PSO-CGSA) for solving the combined economic and emission dispatch (CEED) problem. First, we determine the efficiency and effectiveness measures of the algorithm and compare it with other well-known algorithms. Then, we analyze the obtained solutions using the statistical procedure proposed in the paper. The proposed procedure contains the following: (i) the behavior analysis of the algorithms when solving the CEED problem, using non-parametric tests, and (ii) the ranking of the algorithms using the PROMETHEE/GAIA multi-criteria decision-making method. The behavior analysis is performed for two cases: (i) when solving individual variants of the CEED problem (single-problem analysis) and (ii) when solving a set of CEED variants (multiple-problem analysis). The results of the applied procedure for the test system with six generators show that PSO-CGSA has (i) the best solution for each tested variant of the CEED problem; (ii) the best standard deviation, mean value, error rate, and behavior for the CEED variant with a bi-objective function that simultaneously minimizes fuel cost and emission, taking into account the valve point effect; and (iii) the best rank when solving a set of CEED variants.
Databáze: Directory of Open Access Journals