DYNAMIC STATISTICAL CLASSIFICATION

Autor: JAVIER PULIDO CEJUDO, CARLOS CUEVAS COVARRUBIAS
Jazyk: English<br />Spanish; Castilian
Rok vydání: 2017
Předmět:
Zdroj: Revista de Matemática: Teoría y Aplicaciones, Vol 24, Iss 1, Pp 115-127 (2017)
Druh dokumentu: article
ISSN: 2215-3373
DOI: 10.15517/rmta.v24i1.27774
Popis: We consider the statistical supervised classification problem from adynamical systems approach. We assume that two classes exist and that, for each one, a multivariate normal distribution determines the probability to be in a certain region in then dimensional real vector space. These density functions are the potentials of corresponding gradient vector fields for each class; we construct a “classifying vector field” as a suitable weighted mean ofthem. From data known in the literature, we estimate the population parameters, and the classes are successfully distinguished; we compute and present confusion matrices. A one and two-dimensional analysis is given.
Databáze: Directory of Open Access Journals