Autor: |
Narcisse Batangouna |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 7, Iss 1, Pp 1399-1415 (2022) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2022082?viewType=HTML |
Popis: |
We consider a time semidiscretization of the Ginzburg-Landau equation by the backward Euler scheme. For each time step τ, we build an exponential attractor of the dynamical system associated to the scheme. We prove that, as τ tends to 0, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated to the Allen-Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of τ. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|