A robust family of exponential attractors for a time semi-discretization of the Ginzburg-Landau equation

Autor: Narcisse Batangouna
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 1, Pp 1399-1415 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022082?viewType=HTML
Popis: We consider a time semidiscretization of the Ginzburg-Landau equation by the backward Euler scheme. For each time step τ, we build an exponential attractor of the dynamical system associated to the scheme. We prove that, as τ tends to 0, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated to the Allen-Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of τ.
Databáze: Directory of Open Access Journals