Autor: |
Nancy Alshaer, Tawfik Ismail, Haitham Mahmoud |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 16, p 5201 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24165201 |
Popis: |
In recent research, there has been a significant focus on establishing robust quantum cryptography using the continuous-variable quantum key distribution (CV-QKD) protocol based on Gaussian modulation of coherent states (GMCS). Unlike more stable fiber channels, one challenge faced in free-space quantum channels is the complex transmittance characterized by varying atmospheric turbulence. This complexity poses difficulties in achieving high transmission rates and long-distance communication. In this article, we thoroughly evaluate the performance of the CV-QKD/GMCS system under the effect of individual attacks, considering homodyne detection with both direct and reverse reconciliation techniques. To address the issue of limited detector efficiency, we incorporate the phase-sensitive amplifier (PSA) as a compensating measure. The results show that the CV-QKD/GMCS system with PSA achieves a longer secure distance and a higher key rate compared to the system without PSA, considering both direct and reverse reconciliation algorithms. With an amplifier gain of 10, the reverse reconciliation algorithm achieves a secure distance of 5 km with a secret key rate of 10−1 bits/pulse. On the other hand, direct reconciliation reaches a secure distance of 2.82 km. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|