Autor: |
Muhammad Ali Khan, Rehan Farid Mustafa, Zahid Ahmad Siddiqi, Rehan Masood |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 18, p 8492 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14188492 |
Popis: |
In the local building industry of Pakistan, pre-engineered steel building manufacturers mainly employ their own self-developed software and Excel sheets. These systems are based on empirical formulas mentioned in the AISI manual. Under this scenario, a need was found to validate AISI flow charts using commercial software like CUFSM 5.04 and ABAQUS R2019x. This study presents a validation of the CUFSM software and the American Iron and Steel Institute (AISI) Direct Strength Method (DSM) results of channel section flexural members using the non-linear finite element method employing ABAQUS. In this study, eight standard cold-formed channel-section (C-section) steel members were modeled and analyzed using ABAQUS to simulate realistic behavior under four-point loading conditions. The non-linear finite element models incorporated material and geometric non-linearities to capture the actual response of the steel elements. The results obtained from ABAQUS were compared with those predicted by the CUFSM and DSM, focusing on critical parameters such as nominal strength, buckling modes, and deformation patterns. During this study, it was observed that out of the selected sections, the AISI charts predict conservative and even unsafe flexural capacities in some of the cases concerning other methods, with a maximum difference of 14.03%. The differences obtained using DSM and ABAQUS when compared with the results of the AISI charts varies on both the plus and minus sides. This study will not only affect the industry in terms of innovative designs for efficient structures but also the community in regards to low-budget construction. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|