Detection to trace aluminum ion of pharmaceutical wastewater using synthesis of Schiff-based chemosensor
Autor: | Mengistu Jemberu Dagnaw, Mahesh Gopal |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Environmental Health Engineering and Management, Vol 8, Iss 4, Pp 309-318 (2021) |
Druh dokumentu: | article |
ISSN: | 2423-3765 2423-4311 |
DOI: | 10.34172/EHEM.2021.35 |
Popis: | Background: The aim of this research was to develop a fluorogenic sensor for Al3 + ions, which have been identified as a possible food and drinking water pollutant by the WHO and considered to be harmful to human health. Methods: The sensing mechanism was based on excited-state intramolecular proton transfer, with the intramolecular rotation restriction occurring after binding with the analyte. The probe attaches Al3 + selectively and emits strong emission in 4:1 H2O/MeOH (v/v) solution while irradiated at 400 nm in the presence of a wide number of cations, acting as a “turn-on” fluorescence chemosensor. The range of detection for Al3 + is 3.3 nM (3 method), which is more than 200 times more responsive than the WHO suggested limit of 7.4 mM (3σ method). Mass spectra, job plot, and Benesi-Hildebrand plot were used to determine the formation of the 1:1 metal-to-ligand complex. Results: Aluminum (Al) ion content in effluent obtained from the pharmaceutical sector is 0.381 mM, which is a trace amount. A separate in vitro experiment indicates that the probe can precisely perceive Al3 + ions in a cell line. The sensor-based method is developed to detect 3.3 nM of Al3 + ions, which is significantly less than the WHO max. Conclusion: The probe to detect Al3 + ions in live cells. HL becomes a flexible sensor for recognizing intracellular Al3 + in human liver cancer cell line Hep G2 and human lung fibroblast cell lines by fluorescence cell imaging procedures, and the probe’s non-toxicity has been proven by MTT tests up to 100M. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |