POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models

Autor: Flora Jay, Olivier François, Eric Y. Durand, Michael G. B. Blum
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Journal of Statistical Software, Vol 68, Iss 1, Pp 1-19 (2015)
Druh dokumentu: article
ISSN: 1548-7660
DOI: 10.18637/jss.v068.i09
Popis: The software POPS performs inference of population genetic structure using multilocus genotypic data. Based on a hierarchical Bayesian framework for latent regression models, POPS implements algorithms that improve estimation of individual admixture proportions and cluster membership probabilities by using geographic and environmental information. In addition, POPS defines ancestry distribution models allowing its users to forecast admixture proportion and cluster membership geographic variation under changing environmental conditions. We illustrate a typical use of POPS using data for an alpine plant species, for which POPS predicts changes in spatial population structure assuming a particular scenario of climate change.
Databáze: Directory of Open Access Journals