Detection of Invasive Species in Wetlands: Practical DL with Heavily Imbalanced Data

Autor: Mariano Cabezas, Sarah Kentsch, Luca Tomhave, Jens Gross, Maximo Larry Lopez Caceres, Yago Diez
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Remote Sensing, Vol 12, Iss 20, p 3431 (2020)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs12203431
Popis: Deep Learning (DL) has become popular due to its ease of use and accuracy, with Transfer Learning (TL) effectively reducing the number of images needed to solve environmental problems. However, this approach has some limitations which we set out to explore: Our goal is to detect the presence of an invasive blueberry species in aerial images of wetlands. This is a key problem in ecosystem protection which is also challenging in terms of DL due to the severe imbalance present in the data. Results for the ResNet50 network show a high classification accuracy while largely ignoring the blueberry class, rendering these results of limited practical interest to detect that specific class. Moreover, by using loss function weighting and data augmentation results more akin to our practical application, our goals can be obtained. Our experiments regarding TL show that ImageNet weights do not produce satisfactory results when only the final layer of the network is trained. Furthermore, only minor gains are obtained compared with random weights when the whole network is retrained. Finally, in a study of state-of-the-art DL architectures best results were obtained by the ResNeXt architecture with 93.75 True Positive Rate and 98.11 accuracy for the Blueberry class with ResNet50, Densenet, and wideResNet obtaining close results.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje