Results on Univalent Functions Defined by q-Analogues of Salagean and Ruscheweh Operators
Autor: | Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Kamsing Nonlaopon |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Symmetry, Vol 14, Iss 8, p 1725 (2022) |
Druh dokumentu: | article |
ISSN: | 14081725 2073-8994 |
DOI: | 10.3390/sym14081725 |
Popis: | In this paper, we define and discuss properties of various classes of analytic univalent functions by using modified q-Sigmoid functions. We make use of an idea of Salagean to introduce the q-analogue of the Salagean differential operator. In addition, we derive families of analytic univalent functions associated with new q-Salagean and q-Ruscheweh differential operators. In addition, we obtain coefficient bounds for the functions in such new subclasses of analytic functions and establish certain growth and distortion theorems. By using the concept of the (q, δ)-neighbourhood, we provide several inclusion symmetric relations for certain (q, δ)-neighbourhoods of analytic univalent functions of negative coefficients. Various q-inequalities are also discussed in more details. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |