Popis: |
Abstract Background To date, research assessing discrimination has employed primarily explicit measures (i.e., self-reports), which can be subject to intentional and social desirability processes. Only a few studies, focusing on sex and race/ethnicity discrimination, have relied on implicit measures (i.e., Implicit Association Test, IAT), which permit assessing mental representations that are outside of conscious control. This study aims to advance measurement of discrimination by extending the application of implicit measures to multiple types of discrimination and optimizing the time required for the administration of these instruments. Methods Between September 27th 2019 and February 9th 2020, we conducted six experiments (984 participants) to assess implicit and explicit discrimination based on race/ethnicity, sex, gender identity, sexual orientation, weight, and age. Implicit discrimination was measured by using the Brief-Implicit Association Test (B-IAT), a new validated version of the IAT developed to shorten the time needed (from ≈15 to ≈2 min) to assess implicit mental representations, while explicit discrimination was assessed using self-reported items. Results Among participants (mean age = 37.8), 68.6% were White Non-Hispanic; 69% were females; 76.1% were heterosexual; 90.7% were gender conforming; 52.8% were medium weight; and 41.5% had an advanced level of education. Overall, we found implicit and explicit recognition of discrimination towards all the target groups (stronger for members of the target than dominant groups). Some exceptions emerged in experiments investigating race/ethnicity and weight discrimination. In the racism experiment, only people of Color showed an implicit recognition of discrimination towards the target group, while White people were neutral. In the fatphobia experiment, participants who were not heavy showed a slight implicit recognition of discrimination towards the dominant group, while heavy participants were neutral. Conclusions This study provides evidence that the B-IAT is a valuable tool for quickly assessing multiple types of implicit discrimination. It shows also that implicit and explicit measures can display diverging results, thus indicating that research would benefit from the use of both these instruments. These results have important implications for the assessment of discrimination in health research as well as in social and psychological science. |