A note on heat kernel of graphs

Autor: Yang Yang, Wei Ke, Zhe Wang, Haiyan Qiao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 12, Pp e32235- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e32235
Popis: Consider a simple undirected connected graph G, with D(G) and A(G) representing its degree and adjacency matrices, respectively. Furthermore, L(G)=D(G)−A(G) is the Laplacian matrix of G, and Ht=exp⁡(−tL(G)) is the heat kernel (HK) of G, with t>0 denoting the time variable. For a vertex u∈V(G), the uth element of the diagonal of the HK is defined as Ht(u,u)=(exp⁡(−tL(G)))uu=∑k=0∞((−tL(G))k)uuk!, and HE(G)=∑i=1ne−tλi=∑u=1nHt(u,u) is the HK trace of G, where λ1,λ2,⋯,λn denote the eigenvalues of L(G). This study provides new computational formulas for the HK diagonal entries of graphs using an almost equitable partition and the Schur complement technique. We also provide bounds for the HK trace of the graphs.
Databáze: Directory of Open Access Journals