Autor: |
Disi An, Ryosuke Fujiki, Dylan E Iannitelli, John W Smerdon, Shuvadeep Maity, Matthew F Rose, Alon Gelber, Elizabeth K Wanaselja, Ilona Yagudayeva, Joun Y Lee, Christine Vogel, Hynek Wichterle, Elizabeth C Engle, Esteban Orlando Mazzoni |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
eLife, Vol 8 (2019) |
Druh dokumentu: |
article |
ISSN: |
2050-084X |
DOI: |
10.7554/eLife.44423 |
Popis: |
In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|