α-synuclein strains that cause distinct pathologies differentially inhibit proteasome

Autor: Genjiro Suzuki, Sei Imura, Masato Hosokawa, Ryu Katsumata, Takashi Nonaka, Shin-Ichi Hisanaga, Yasushi Saeki, Masato Hasegawa
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: eLife, Vol 9 (2020)
Druh dokumentu: article
ISSN: 2050-084X
DOI: 10.7554/eLife.56825
Popis: Abnormal α-synuclein aggregation has been implicated in several diseases and is known to spread in a prion-like manner. There is a relationship between protein aggregate structure (strain) and clinical phenotype in prion diseases, however, whether differences in the strains of α-synuclein aggregates account for the different pathologies remained unclear. Here, we generated two types of α-synuclein fibrils from identical monomer and investigated their seeding and propagation ability in mice and primary-cultured neurons. One α-synuclein fibril induced marked accumulation of phosphorylated α-synuclein and ubiquitinated protein aggregates, while the other did not, indicating the formation of α-synuclein two strains. Notably, the former α-synuclein strain inhibited proteasome activity and co-precipitated with 26S proteasome complex. Further examination indicated that structural differences in the C-terminal region of α-synuclein strains lead to different effects on proteasome activity. These results provide a possible molecular mechanism to account for the different pathologies induced by different α-synuclein strains.
Databáze: Directory of Open Access Journals