∗-η-Ricci Soliton and Gradient Almost ∗-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds
Autor: | Santu Dey, Nasser Bin Turki |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Frontiers in Physics, Vol 10 (2022) |
Druh dokumentu: | article |
ISSN: | 2296-424X 83668357 |
DOI: | 10.3389/fphy.2022.809405 |
Popis: | The goal of the present study is to study the ∗-η-Ricci soliton and gradient almost ∗-η-Ricci soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein metrics. We demonstrate that a para-Kenmotsu metric as a ∗-η-Ricci soliton is an Einstein metric if the soliton vector field is contact. Next, we discuss the nature of the soliton and discover the scalar curvature when the manifold admits a ∗-η-Ricci soliton on a para-Kenmotsu manifold. After that, we expand the characterization of the vector field when the manifold satisfies the ∗-η-Ricci soliton. Furthermore, we characterize the para-Kenmotsu manifold or the nature of the potential vector field when the manifold satisfies the gradient almost ∗-η-Ricci soliton. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |