∗-η-Ricci Soliton and Gradient Almost ∗-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds

Autor: Santu Dey, Nasser Bin Turki
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Physics, Vol 10 (2022)
Druh dokumentu: article
ISSN: 2296-424X
83668357
DOI: 10.3389/fphy.2022.809405
Popis: The goal of the present study is to study the ∗-η-Ricci soliton and gradient almost ∗-η-Ricci soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein metrics. We demonstrate that a para-Kenmotsu metric as a ∗-η-Ricci soliton is an Einstein metric if the soliton vector field is contact. Next, we discuss the nature of the soliton and discover the scalar curvature when the manifold admits a ∗-η-Ricci soliton on a para-Kenmotsu manifold. After that, we expand the characterization of the vector field when the manifold satisfies the ∗-η-Ricci soliton. Furthermore, we characterize the para-Kenmotsu manifold or the nature of the potential vector field when the manifold satisfies the gradient almost ∗-η-Ricci soliton.
Databáze: Directory of Open Access Journals