Determinant identities for toeplitz-hessenberg matrices with tribonacci entries

Autor: Taras Goy, Mark Shattuck
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Transactions on Combinatorics, Vol 9, Iss 2, Pp 89-109 (2020)
Druh dokumentu: article
ISSN: 2251-8657
2251-8665
DOI: 10.22108/toc.2020.116257.1631
Popis: In this paper‎, ‎we evaluate determinants of some families of Toeplitz--Hessenberg matrices having tribonacci number entries‎. ‎These determinant formulas may also be expressed equivalently as identities that involve sums of products of multinomial coefficients and tribonacci numbers‎. ‎In particular‎, ‎we establish a connection between the tribonacci and the Fibonacci and Padovan sequences via Toeplitz--Hessenberg determinants‎. ‎We then obtain‎, ‎by combinatorial arguments‎, ‎extensions of our determinant formulas in terms of generalized tribonacci sequences satisfying a recurrence of the form $T_n^{(r)}=T_{n-1}^{(r)}+T_{n-2}^{(r)}+T_{n-r}^{(r)}$ for $n \geq r$‎, ‎with the appropriate initial conditions‎, ‎where $r \geq 3$ is arbitrary‎.
Databáze: Directory of Open Access Journals