Automated detection of axonal damage along white matter tracts in acute severe traumatic brain injury

Autor: Chiara Maffei, Natalie Gilmore, Samuel B. Snider, Andrea S. Foulkes, Yelena G. Bodien, Anastasia Yendiki, Brian L. Edlow
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: NeuroImage: Clinical, Vol 37, Iss , Pp 103294- (2023)
Druh dokumentu: article
ISSN: 2213-1582
DOI: 10.1016/j.nicl.2022.103294
Popis: New techniques for individualized assessment of white matter integrity are needed to detect traumatic axonal injury (TAI) and predict outcomes in critically ill patients with acute severe traumatic brain injury (TBI). Diffusion MRI tractography has the potential to quantify white matter microstructure in vivo and has been used to characterize tract-specific changes following TBI. However, tractography is not routinely used in the clinical setting to assess the extent of TAI, in part because focal lesions reduce the robustness of automated methods. Here, we propose a pipeline that combines automated tractography reconstructions of 40 white matter tracts with multivariate analysis of along-tract diffusion metrics to assess the presence of TAI in individual patients with acute severe TBI. We used the Mahalanobis distance to identify abnormal white matter tracts in each of 18 patients with acute severe TBI as compared to 33 healthy subjects. In all patients for which a FreeSurfer anatomical segmentation could be obtained (17 of 18 patients), including 13 with focal lesions, the automated pipeline successfully reconstructed a mean of 37.5 ± 2.1 white matter tracts without the need for manual intervention. A mean of 2.5 ± 2.1 tracts resulted in partial or failed reconstructions and needed to be reinitialized upon visual inspection. The pipeline detected at least one abnormal tract in all patients (mean: 9.1 ± 7.9) and accurately discriminated between patients and controls (AUC: 0.91). The number and neuroanatomic location of abnormal tracts varied across patients and levels of consciousness. The premotor, temporal, and parietal sections of the corpus callosum were the most commonly damaged tracts (in 10, 9, and 8 patients, respectively), consistent with prior histopathological studies of TAI. TAI measures were not associated with concurrent behavioral measures of consciousness. In summary, we provide proof-of-principle evidence that an automated tractography pipeline has translational potential to detect and quantify TAI in individual patients with acute severe TBI.
Databáze: Directory of Open Access Journals