Autor: |
Seidon Alsaody, Vladimir Chernousov, Arturo Pianzola |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Forum of Mathematics, Sigma, Vol 9 (2021) |
Druh dokumentu: |
article |
ISSN: |
2050-5094 |
DOI: |
10.1017/fms.2021.65 |
Popis: |
We prove that the structure group of any Albert algebra over an arbitrary field is R-trivial. This implies the Tits–Weiss conjecture for Albert algebras and the Kneser–Tits conjecture for isotropic groups of type $\mathrm {E}_{7,1}^{78}, \mathrm {E}_{8,2}^{78}$ . As a further corollary, we show that some standard conjectures on the groups of R-equivalence classes in algebraic groups and the norm principle are true for strongly inner forms of type $^1\mathrm {E}_6$ . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|