Autor: |
Crystal Kayaro Emonde, Christof Hurschler, André Breuer, Max-Enno Eggers, Marcel Wichmann, Max Ettinger, Berend Denkena |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-68383-x |
Popis: |
Abstract Wear of the ultra-high molecular-weight polyethylene (UHMWPE) component in total knee arthroplasty contributes to implant failure. It is often detected late, when patients experience pain or instability. Early monitoring could enable timely intervention, preventing implant failure and joint degeneration. This study investigates the accuracy and precision (repeatability) of model-based wear measurement (MBWM), a novel technique that can estimate inlay thickness and wear radiographically. Six inlays were milled from non-crosslinked UHMWPE and imaged via X-ray in anteroposterior view at flexion angles 0°, 30°, and 60° on a phantom knee model. MBWM measurements were compared with reference values from a coordinate measurement machine. Three inlays were subjected to accelerated wear generation and similarly evaluated. MBWM estimated inlay thickness with medial and lateral accuracies of 0.13 ± 0.09 and 0.14 ± 0.09 mm, respectively, and linear wear with an accuracy of 0.07 ± 0.06 mm. Thickness measurements revealed significant lateral differences at 0° and 30° (0.22 ± 0.08 mm vs. 0.06 ± 0.06 mm, respectively; t-test, p = 0.0002). Precision was high, with average medial and lateral differences of − 0.01 ± 0.04 mm between double experiments. MBWM using plain radiographs presents a practical and promising approach for the clinical detection of implant wear. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|