Autor: |
Swee Hong Chan, Igor Pak |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Forum of Mathematics, Pi, Vol 12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2050-5086 |
DOI: |
10.1017/fmp.2024.20 |
Popis: |
Describing the equality conditions of the Alexandrov–Fenchel inequality [Ale37] has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem and is a complexity counterpart of the recent result by Shenfeld and van Handel [SvH23], which gave a geometric characterization of the equality conditions. The proof involves Stanley’s [Sta81] order polytopes and employs poset theoretic technology. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|