Double Bubbles on the Real Line with Log-Convex Density

Autor: Bongiovanni Eliot, Di Giosia Leonardo, Diaz Alejandro, Habib Jahangir, Kakkar Arjun, Kenigsberg Lea, Pittman Dylanger, Sothanaphan Nat, Zhu Weitao
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Analysis and Geometry in Metric Spaces, Vol 6, Iss 1, Pp 64-88 (2018)
Druh dokumentu: article
ISSN: 2299-3274
2018-0004
DOI: 10.1515/agms-2018-0004
Popis: The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).
Databáze: Directory of Open Access Journals