Autor: |
Lakshmi Reddy Palam, Baskar Ramdas, Katelyn Pickerell, Santhosh Kumar Pasupuleti, Rahul Kanumuri, Annamaria Cesarano, Megan Szymanski, Bryce Selman, Utpal P. Dave, George Sandusky, Fabiana Perna, Sophie Paczesny, Reuben Kapur |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
JCI Insight, Vol 8, Iss 9 (2023) |
Druh dokumentu: |
article |
ISSN: |
2379-3708 |
DOI: |
10.1172/jci.insight.163864 |
Popis: |
Loss-of-function mutations in the DNA methyltransferase 3A (DNMT3A) are seen in a large number of patients with acute myeloid leukemia (AML) with normal cytogenetics and are frequently associated with poor prognosis. DNMT3A mutations are an early preleukemic event, which — when combined with other genetic lesions — result in full-blown leukemia. Here, we show that loss of Dnmt3a in hematopoietic stem and progenitor cells (HSC/Ps) results in myeloproliferation, which is associated with hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway. PI3Kα/β or the PI3Kα/δ inhibitor treatment partially corrects myeloproliferation, although the partial rescue is more efficient in response to the PI3Kα/β inhibitor treatment. In vivo RNA-Seq analysis on drug-treated Dnmt3a–/– HSC/Ps showed a reduction in the expression of genes associated with chemokines, inflammation, cell attachment, and extracellular matrix compared with controls. Remarkably, drug-treated leukemic mice showed a reversal in the enhanced fetal liver HSC-like gene signature observed in vehicle-treated Dnmt3a–/– LSK cells as well as a reduction in the expression of genes involved in regulating actin cytoskeleton-based functions, including the RHO/RAC GTPases. In a human PDX model bearing DNMT3A mutant AML, PI3Kα/β inhibitor treatment prolonged their survival and rescued the leukemic burden. Our results identify a potentially new target for treating DNMT3A mutation–driven myeloid malignancies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|