Pythagorean triples and quadratic residues modulo an odd prime

Autor: Jiayuan Hu, Yu Zhan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 1, Pp 957-966 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022057?viewType=HTML
Popis: In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.
Databáze: Directory of Open Access Journals