Autor: |
Shinichi Goto, Keitaro Mahara, Lauren Beussink-Nelson, Hidehiko Ikura, Yoshinori Katsumata, Jin Endo, Hanna K. Gaggin, Sanjiv J. Shah, Yuji Itabashi, Calum A. MacRae, Rahul C. Deo |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-021-22877-8 |
Popis: |
Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|