Bounds on Negative Binomial Approximation to Call Function

Autor: Amit N. Kumar
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Revstat Statistical Journal, Vol 22, Iss 1 (2024)
Druh dokumentu: article
ISSN: 1645-6726
2183-0371
DOI: 10.57805/revstat.v22i1.437
Popis: In this paper, we develop Stein's method for negative binomial distribution using call function defined by fz(k) = (k - z)+ = max{k - z, 0}, for k ≥ 0 and z ≥ 0. We obtain error bounds between E [ fz(Nr,p)] and E [ fz(V )], where Nr,p follows negative binomial distribution and V is the sum of locally dependent random variables, using certain conditions on moments. We demonstrate our results through an interesting application, namely, collateralized debt obligation (CDO), and compare the bounds with the existing bounds.
Databáze: Directory of Open Access Journals