Autor: |
Clifford Silver Tarimo, Soumitra S. Bhuyan, Yizhen Zhao, Weicun Ren, Akram Mohammed, Quanman Li, Marilyn Gardner, Michael Johnson Mahande, Yuhui Wang, Jian Wu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
BMC Pregnancy and Childbirth, Vol 22, Iss 1, Pp 1-14 (2022) |
Druh dokumentu: |
article |
ISSN: |
1471-2393 |
DOI: |
10.1186/s12884-022-04534-0 |
Popis: |
Abstract Background Prediction of low Apgar score for vaginal deliveries following labor induction intervention is critical for improving neonatal health outcomes. We set out to investigate important attributes and train popular machine learning (ML) algorithms to correctly classify neonates with a low Apgar scores from an imbalanced learning perspective. Methods We analyzed 7716 induced vaginal deliveries from the electronic birth registry of the Kilimanjaro Christian Medical Centre (KCMC). 733 (9.5%) of which constituted of low ( |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|