Parabolic turbulence k-epsilon model with applications in fluid flows through permeable media

Autor: Hermenegildo Borges de Oliveira
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Opuscula Mathematica, Vol 44, Iss 2, Pp 197-240 (2024)
Druh dokumentu: article
ISSN: 1232-9274
DOI: 10.7494/OpMath.2024.44.2.197
Popis: In this work, we study a one-equation turbulence \(k\)-epsilon model that governs fluid flows through permeable media. The model problem under consideration here is derived from the incompressible Navier-Stokes equations by the application of a time-averaging operator used in the \(k\)-epsilon modeling and a volume-averaging operator that is characteristic of modeling unsteady porous media flows. For the associated initial- and boundary-value problem, we prove the existence of suitable weak solutions (average velocity field and turbulent kinetic energy) in the space dimensions of physics interest.
Databáze: Directory of Open Access Journals