Autor: |
Hermenegildo Borges de Oliveira |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Opuscula Mathematica, Vol 44, Iss 2, Pp 197-240 (2024) |
Druh dokumentu: |
article |
ISSN: |
1232-9274 |
DOI: |
10.7494/OpMath.2024.44.2.197 |
Popis: |
In this work, we study a one-equation turbulence \(k\)-epsilon model that governs fluid flows through permeable media. The model problem under consideration here is derived from the incompressible Navier-Stokes equations by the application of a time-averaging operator used in the \(k\)-epsilon modeling and a volume-averaging operator that is characteristic of modeling unsteady porous media flows. For the associated initial- and boundary-value problem, we prove the existence of suitable weak solutions (average velocity field and turbulent kinetic energy) in the space dimensions of physics interest. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|