Aβ Chronic Exposure Promotes an Activation State of Microglia through Endocannabinoid Signalling Imbalance
Autor: | Lucia Scipioni, Daniel Tortolani, Francesca Ciaramellano, Federico Fanti, Thais Gazzi, Manuel Sergi, Marc Nazaré, Sergio Oddi, Mauro Maccarrone |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | International Journal of Molecular Sciences, Vol 24, Iss 7, p 6684 (2023) |
Druh dokumentu: | article |
ISSN: | 1422-0067 1661-6596 49020110 |
DOI: | 10.3390/ijms24076684 |
Popis: | Dysfunctional phenotype of microglia, the primary brain immune cells, may aggravate Alzheimer’s disease (AD) pathogenesis by releasing proinflammatory factors, such as nitric oxide (NO). The endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are bioactive lipids increasingly recognised for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. To investigate the possible impact of chronic exposure to β-amyloid peptides (Aβ) on the microglial endocannabinoid signalling, we characterised the functional expression of the endocannabinoid system on neonatal microglia isolated from wild-type and Tg2576 mice, an AD-like model, which overexpresses Aβ peptides in the developing brain. We found that Aβ-exposed microglia produced 2-fold more 2-AG than normal microglia. Accordingly, the expression levels of diacylglycerol lipase-α (DAGLα) and monoacylglycerol lipase (MAGL), the main enzymes responsible for synthesising and hydrolysing 2-AG, respectively, were consistently modified in Tg2576 microglia. Furthermore, compared to wild-type cells, transgenic microglia basally showed increased expression of the cannabinoid 2 receptor, typically upregulated in an activated proinflammatory phenotype. Indeed, following inflammatory stimulus, Aβ-exposed microglia displayed an enhanced production of NO, which was abolished by pharmacological inhibition of DAGLα. These findings suggested that exposure to Aβ polarises microglial cells towards a pro-AD phenotype, possibly by enhancing 2-AG signalling. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |