Autor: |
Taichi Miura, Masahiko Kume, Takeshi Kawamura, Kazuo Yamamoto, Takao Hamakubo, Shoko Nishihara |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Stem Cell Reports, Vol 10, Iss 1, Pp 272-286 (2018) |
Druh dokumentu: |
article |
ISSN: |
2213-6711 |
DOI: |
10.1016/j.stemcr.2017.11.007 |
Popis: |
Summary: Mouse embryonic stem cells (ESCs) differentiate into multiple cell types during organismal development. Fibroblast growth factor 4 (FGF4) signaling induces differentiation from ESCs via the phosphorylation of downstream molecules such as mitogen-activated protein kinase/extracellular signal-related kinase (MEK) and extracellular signal-related kinase 1/2 (ERK1/2). The FGF4-MEK-ERK1/2 pathway is inhibited to maintain ESCs in the undifferentiated state. However, the inhibitory mechanism of the FGF4-MEK-ERK1/2 pathway in ESCs is uncharacterized. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification characterized by the attachment of a single N-acetylglucosamine (GlcNAc) to the serine and threonine residues of nuclear or cytoplasmic proteins. Here, we showed that the O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ phosphorylation (activation) and, consequently, the FGF4-PKCζ-MEK-ERK1/2 pathway in ESCs. Our results demonstrate the mechanism for the maintenance of the undifferentiated state of ESCs via the inhibition of the FGF4-PKCζ-MEK-ERK1/2 pathway by O-GlcNAcylation on PKCζ. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|