Quantum Mechanics/Molecular Mechanics Study on Caspase-2 Recognition by Peptide Inhibitors

Autor: Petar M Mitrasinovic
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Acta Chimica Slovenica, Vol 67, Iss 3, Pp 876-884 (2020)
Druh dokumentu: article
ISSN: 1318-0207
1580-3155
DOI: 10.17344/acsi.2020.5847
Popis: For a variety of biological and medical reasons, the ongoing development of humane caspase-2 inhibitors is of vital importance. Herein, a hybrid (Quantum Mechanics/Molecular Mechanics - QM/MM), two-layered molecular model is derived in order to understand better the affinity and specificity of peptide inhibitor interaction with caspase-2. By taking care of both the unique structural features and the catalytic activity of human caspase-2, the critical enzyme residues (E217, R378, N379, T380, and Y420) with the peptide inhibitor are treated at QM level (the Self-Consistent-Charge Density-Functional Tight-Binding method with the Dispersion correction (SCC-DFTB-D)), while the remaining part of the complex is treated at MM level (AMBER force field). The QM/MM binding free energies (BFEs) are well-correlated with the experimental observations and indicate that caspase-2 uniquely prefers a penta-peptide such as VDVAD. The sequence of VDVAD is varied in a systematic fashion by considering the physicochemical properties of every constitutive amino acid and its substituent, and the corresponding BFE with the inhibition constant (Ki) is evaluated. The values of Ki for several caspase-2:peptide complexes are found to be within the experimental range (between 0.01 nM and 1 μM). The affinity order is: VELAD (Ki=0.081 nM) > VDVAD (Ki=0.23 nM) > VEIAD (Ki=0.61 nM) > VEVAD (Ki=3.7 nM) > VDIAD (Ki=4.5 nM) etc. An approximate condition needed to be satisfied by the kinetic parameters (the Michaelis constant - KM and the specificity constant - kcat/KM) for competitive inhibition is reported. The estimated values of kcat/KM, being within the experimentally established range (between 10-4 and 10-1 μM-1 s-1), indicate that VELAD and VDVAD are most specific to caspase-2. These two particular peptides are nearly 1.5, 3 and 4 times more specific to the receptor than VEIAD, VEVAD and VDIAD respectively. Additional kinetic threshold, aimed to discriminate tightly bound inhibitors, is given.
Databáze: Directory of Open Access Journals