Autor: |
Shobitha Unnikrishnan, Robert L Scott, Emmanuel Ogundele, Mohammad A Azad, Kenta Ishimoto, Susan S. Suarez, Chih Kuan Tung |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-72816-y |
Popis: |
Abstract To fertilize eggs, sperm must pass through narrow, complex channels filled with viscoelastic fluids in the female reproductive tract. While it is known that the topography of the surfaces plays a role in guiding sperm movement, sperm have been thought of as swimmers, i.e., their motility comes solely from sperm interaction with the surrounding fluid, and therefore, the surfaces have no direct role in the motility mechanism itself. Here, we examined the role of solid surfaces in the movement of sperm in a highly viscoelastic medium. By visualizing the flagellum interaction with surfaces in a microfluidic device, we found that the flagellum stays close to the surface while the kinetic friction between the flagellum and the surface is in the direction of sperm movement, providing thrust. Additionally, the flow field generated by sperm suggests slippage between the viscoelastic fluid and the solid surface, deviating from the no-slip boundary typically used in standard fluid dynamics models. These observations point to hybrid motility mechanisms in sperm involving direct flagellum-surface interaction in addition to flagellum pushing the fluid. This finding signifies an evolutionary strategy of mammalian sperm crucial for their efficient migration through narrow, mucus-filled passages of the female reproductive tract. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|