Studies on invariant measures of fractional stochastic delay Ginzburg-Landau equations on $ \mathbb{R}^n $

Autor: Hong Lu, Linlin Wang, Mingji Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematical Biosciences and Engineering, Vol 21, Iss 4, Pp 5456-5498 (2024)
Druh dokumentu: article
ISSN: 1551-0018
DOI: 10.3934/mbe.2024241?viewType=HTML
Popis: This paper is concerned with invariant measures of fractional stochastic delay Ginzburg-Landau equations on the entire space $ \mathbb{R}^n $. We first derive the uniform estimates and the mean-square uniform smallness of the tails of solutions in corresponding space. Then we deduce the weak compactness of a set of probability distributions of the solutions applying the Ascoli-Arzel$ \grave{a} $. We finally prove the existence of invariant measures by applying Krylov-Bogolyubov's method.
Databáze: Directory of Open Access Journals