Autor: |
Virginie Dinet, Louiza Arouche-Delaperche, Julie Dégardin, Marie-Christine Naud, Serge Picaud, Slavica Krantic |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Cells, Vol 11, Iss 10, p 1650 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-4409 |
DOI: |
10.3390/cells11101650 |
Popis: |
The pre-symptomatic stage of Alzheimer’s disease (AD) is associated with increased amyloid-β (Aβ) precursor protein (APP) processing and Aβ accumulation in the retina and hippocampus. Because neuronal dysfunctions are among the earliest AD-related alterations, we asked whether they are already detectable in the retina during the pre-symptomatic stage in a APPswePS1dE9 (APP/PS1) mouse model. The age chosen for the study (3–4 months) corresponds to the pre-symptomatic stage because no retinal Aβ was detected, in spite of the presence of βCTF (the first cleavage product of APP). We observed an increase in ERG amplitudes in APP/PS1 mice in comparison to the controls, which indicated an increased retinal neuron activity. These functional changes coincided with an increased expression of retinal TNFα and its receptors type-1 (TNFR1). Consistently, the IkB expression increased in APP/PS1 mice with a greater proportion of the phosphorylated protein (P-IkB) over total IkB, pointing to the putative involvement of the NFkB pathway. Because TNFα plays a crucial role in the control of neuronal excitability, it is likely that, as in the hippocampus, TNFα signaling via the TNFR1/NFkB pathway may be also involved in early, AD-associated, retinal neuron hyperexcitability. These results further demonstrate the interest of the retina for early disease detection with a potential to assess future therapeutic strategies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|