Popis: |
Research problem: Public health and the economy face immense problems because of pathogens in history globally. The outbreak of novel SARS-CoV-2 emerged in the form of coronavirus (COVID-19), which affected global health and the economy in almost all countries of the world. Study design: The objective of this research is to examine the trend of COVID-19, deaths, and transmission rates in 202 affected countries. The virus-affected countries were grouped according to their continent, meteorological indicators, demography, and income. This is quantitative research in which we have applied the Poisson regression method to assess how temperature, precipitation, population density, and income level impact COVID-19 cases and fatalities. This has been done by using a semi-parametric and additive polynomial model. Findings: The trend analysis depicts that COVID-19 cases per million were comparatively higher for two groups of countries i.e., (a) average temperature below 7.5 °C and (b) average temperature between 7.5 °C and 15 °C, up to the 729th day of the outbreak. However, COVID-19 cases per million were comparatively low in the countries having an average temperature between 22.5 °C and 30 °C. The day-wise trend was comparatively higher for the countries having average precipitation between (a) 1 mm and 750 mm and (b) 750 mm and 1500 mm up to the 729th day of the outbreak. The day-wise trend was comparatively higher for the countries having more than 1000 people per sq. km. Discussing the COVID-19 cases per million, the day-wise trend was higher for the HICs, followed by UMICs, LMICs, and LIC. Conclusion: The study highlights the need for targeted interventions and responses based on the specific circumstances and factors affecting each country, including their geographical location, temperature, precipitation levels, population density, and per capita income. |