Autor: |
M. H. Hassan, Tamer El-Azab, Ghada AlNemer, M. A. Sohaly, H. El-Metwally |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 23, p 3697 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12233697 |
Popis: |
This paper presents a mathematical model to examine the transmission and stability dynamics of the SEIR model for COVID-19. To assess disease progression, the model incorporates a time delay for the time delay and survival rates. Then, we use the Routh–Hurwitz criterion, the LaSalle stability principle, and Hopf bifurcation analysis to look at disease-free and endemic equilibrium points. We investigate global stability using the Lyapunov function and simulate the model behavior with real COVID-19 data from Indonesia. The results confirm the impact of time delay on disease transmission, mitigation strategies, and population recovery rates, demonstrating that rapid interventions can significantly impact the course of the epidemic. The results indicate that a balance between transmission reduction and vaccination efforts is crucial for achieving long-term stability and controlling disease outbreaks. Finally, we estimate the degree of disease control and look at the rate of disease spread by simulating the genuine data. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|