Autor: |
Giacomo Mantriota, Giulio Reina, Angelo Ugenti |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 11, Iss 18, p 8749 (2021) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app11188749 |
Popis: |
The Power-Split Continuously Variable Transmission is one of the most promising architectures for Hybrid Electric Vehicles. These systems have been introduced to improve vehicle global efficiency since they can maximize the efficiency in varying operating conditions. During the design stage, the availability of modeling tools would play a key role in achieving optimal design and control of these architectures. In this work, a compound power split device that combines an electric Continuously Variable Transmission with two planetary gear trains is analyzed. A comprehensive model is derived that allows the different power flow configurations to be evaluated given the properties of the single subcomponents of the system. The efficiency of the powertrain can be derived as well, and a numerical example is provided. The architecture studied has an efficiency that can be higher than that obtained using one single eCVT for most of the global transmission ratio range, showing that this solution could be suitable as a part of a more complex compound transmission that engages in a specific speed range. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|