On Euler products with smaller than one exponents
Autor: | Román Gábor |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Acta Universitatis Sapientiae: Mathematica, Vol 12, Iss 1, Pp 193-211 (2020) |
Druh dokumentu: | article |
ISSN: | 2066-7752 2020-0013 |
DOI: | 10.2478/ausm-2020-0013 |
Popis: | Investigation has been made regarding the properties of the ℿp≤n (1 ± 1/ps) products over the prime numbers, where we fix the s ∈ ℝ exponent, and let the n ≥ 2 natural bound grow toward positive infinity. The nature of these products for the s ≥ 1 case is known. We get approximations for the case when s ∈ [1/2, 1), furthermore different observations for the case when s |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |