On Euler products with smaller than one exponents

Autor: Román Gábor
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Acta Universitatis Sapientiae: Mathematica, Vol 12, Iss 1, Pp 193-211 (2020)
Druh dokumentu: article
ISSN: 2066-7752
2020-0013
DOI: 10.2478/ausm-2020-0013
Popis: Investigation has been made regarding the properties of the ℿp≤n (1 ± 1/ps) products over the prime numbers, where we fix the s ∈ ℝ exponent, and let the n ≥ 2 natural bound grow toward positive infinity. The nature of these products for the s ≥ 1 case is known. We get approximations for the case when s ∈ [1/2, 1), furthermore different observations for the case when s
Databáze: Directory of Open Access Journals