Automated healthcare-associated infection surveillance using an artificial intelligence algorithm

Autor: R.P. dos Santos, D. Silva, A. Menezes, S. Lukasewicz, C.H. Dalmora, O. Carvalho, J. Giacomazzi, N. Golin, R. Pozza, T.A. Vaz
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Infection Prevention in Practice, Vol 3, Iss 3, Pp 100167- (2021)
Druh dokumentu: article
ISSN: 2590-0889
DOI: 10.1016/j.infpip.2021.100167
Popis: Summary: Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer perceptron neural network achieving an area under receiver operating curve (AUROC) of 90.27%; specificity of 78.86%; sensitivity of 88.57%. Respiratory infections had the best results (AUROC ≥93.47%). The AI algorithm could identify most HAIs. AI is a feasible method for HAI surveillance, has the potential to save time, promote accurate hospital-wide surveillance, and improve infection prevention performance.
Databáze: Directory of Open Access Journals