Autor: |
Catie LeDesma, Kendall Mehling, Jieqiu Shao, John Drew Wilson, Penina Axelrad, Marco Nicotra, Dana Z. Anderson, Murray Holland |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 6, Iss 4, p 043120 (2024) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.6.043120 |
Popis: |
Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|