Popis: |
ABSTRACT: Claw diseases and mastitis represent the most important disease traits in dairy cattle with increasing incidences and a frequently mentioned connection to milk yield. Yet, many studies aimed to detect the genetic background of both trait complexes via fine-mapping of quantitative trait loci. However, little is known about genomic regions that simultaneously affect milk production and disease traits. For this purpose, several tools to detect local genetic correlations have been developed. In this study, we attempted a detailed analysis of milk production and disease traits as well as their interrelationship using a sample of 34,497 50K genotyped German Holstein cows with milk production and claw and udder disease traits records. We performed a pedigree-based quantitative genetic analysis to estimate heritabilities and genetic correlations. Additionally, we generated GWAS summary statistics, paying special attention to genomic inflation, and used these data to identify shared genomic regions, which affect various trait combinations. The heritability on the liability scale of the disease traits was low, between 0.02 for laminitis and 0.19 for interdigital hyperplasia. The heritabilities for milk production traits were higher (between 0.27 for milk energy yield and 0.48 for fat-protein ratio). Global genetic correlations indicate the shared genetic effect between milk production and disease traits on a whole genome level. Most of these estimates were not significantly different from zero, only mastitis showed a positive one to milk (0.18) and milk energy yield (0.13), as well as a negative one to fat-protein ratio (−0.07). The genomic analysis revealed significant SNPs for milk production traits that were enriched on Bos taurus autosome 5, 6, and 14. For digital dermatitis, we found significant hits, predominantly on Bos taurus autosome 5, 10, 22, and 23, whereas we did not find significantly trait-associated SNPs for the other disease traits. Our results confirm the known genetic background of disease and milk production traits. We further detected 13 regions that harbor strong concordant effects on a trait combination of milk production and disease traits. This detailed investigation of genetic correlations reveals additional knowledge about the localization of regions with shared genetic effects on these trait complexes, which in turn enables a better understanding of the underlying biological pathways and putatively the utilization for a more precise design of breeding schemes. |