Sinc-Galerkin method for solving the time fractional convection–diffusion equation with variable coefficients

Autor: Li Juan Chen, MingZhu Li, Qiang Xu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-16 (2020)
Druh dokumentu: article
ISSN: 1687-1847
DOI: 10.1186/s13662-020-02959-5
Popis: Abstract In this paper, a new numerical algorithm for solving the time fractional convection–diffusion equation with variable coefficients is proposed. The time fractional derivative is estimated using the L 1 $L_{1}$ formula, and the spatial derivative is discretized by the sinc-Galerkin method. The convergence analysis of this method is investigated in detail. The numerical solution is 2 − α $2-\alpha$ order accuracy in time and exponential rate of convergence in space. Finally, some numerical examples are given to show the effectiveness of the numerical scheme.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje