Autor: |
Li Juan Chen, MingZhu Li, Qiang Xu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-16 (2020) |
Druh dokumentu: |
article |
ISSN: |
1687-1847 |
DOI: |
10.1186/s13662-020-02959-5 |
Popis: |
Abstract In this paper, a new numerical algorithm for solving the time fractional convection–diffusion equation with variable coefficients is proposed. The time fractional derivative is estimated using the L 1 $L_{1}$ formula, and the spatial derivative is discretized by the sinc-Galerkin method. The convergence analysis of this method is investigated in detail. The numerical solution is 2 − α $2-\alpha$ order accuracy in time and exponential rate of convergence in space. Finally, some numerical examples are given to show the effectiveness of the numerical scheme. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|