Counting geodesics of given commutator length

Autor: Viveka Erlandsson, Juan Souto
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 11 (2023)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2023.114
Popis: Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $ . In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.
Databáze: Directory of Open Access Journals