Autor: |
Viveka Erlandsson, Juan Souto |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Forum of Mathematics, Sigma, Vol 11 (2023) |
Druh dokumentu: |
article |
ISSN: |
2050-5094 |
DOI: |
10.1017/fms.2023.114 |
Popis: |
Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $ . In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|