Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future

Autor: Alex W. Dye, Rachel M. Houtman, Peng Gao, William R. L. Anderegg, Christopher J. Fettig, Jeffrey A. Hicke, John B. Kim, Christopher J. Still, Kevin Young, Karin L. Riley
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Carbon Balance and Management, Vol 19, Iss 1, Pp 1-25 (2024)
Druh dokumentu: article
ISSN: 1750-0680
DOI: 10.1186/s13021-024-00282-0
Popis: Abstract In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje