Solving the Dual Generalized Commutative Quaternion Matrix Equation AXB = C

Autor: Lei Shi, Qing-Wen Wang, Lv-Ming Xie, Xiao-Feng Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Symmetry, Vol 16, Iss 10, p 1359 (2024)
Druh dokumentu: article
ISSN: 16101359
2073-8994
DOI: 10.3390/sym16101359
Popis: Dual generalized commutative quaternions have broad application prospects in many fields. Additionally, the matrix equation AXB=C has important applications in mathematics and engineering, especially in control systems, economics, computer science, and other disciplines. However, research on the matrix equation AXB=C over the dual generalized commutative quaternions remains relatively insufficient. In this paper, we derive the necessary and sufficient conditions for the solvability of the dual generalized commutative quaternion matrix equation AXB=C. Furthermore, we provide the general solution expression for this matrix equation, when it is solvable. Finally, a numerical algorithm and an example are provided to confirm the reliability of the main conclusions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje