Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating

Autor: Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: APL Photonics, Vol 9, Iss 7, Pp 076117-076117-10 (2024)
Druh dokumentu: article
ISSN: 2378-0967
DOI: 10.1063/5.0212591
Popis: Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.
Databáze: Directory of Open Access Journals