Autor: |
Hai-Yan Zhou, Wang-Jie Wu, Yue-Ying Xu, Bin Zhou, Kun Niu, Zhi-Qiang Liu, Yu-Guo Zheng |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Frontiers in Bioengineering and Biotechnology, Vol 8 (2020) |
Druh dokumentu: |
article |
ISSN: |
2296-4185 |
DOI: |
10.3389/fbioe.2020.00300 |
Popis: |
L-Methionine (L-Met) is a sulfur-containing amino acid, which is one of the eight essential amino acids to human body. In this work, the fermentative production of L-Met with genetically engineered Escherichia coli W3110-BL in a 5-L fermentor was enhanced through supplement of Ca2+ into the fermentation medium. With the addition of 30 g/L calcium carbonate (CaCO3), the titer of L-Met and yield against glucose reached 1.48 g/L and 0.09 mol/mol glucose, 57.45% higher than those of the control, respectively. The flux balance analysis (FBA) revealed that addition of CaCO3 strengthened the tricarboxylic acid cycle and increased the intracellular ATP concentration by 39.28%. The re-distribution of carbon, ATP, and cofactors flux may collaborate to improve L-Met biosynthesis with E. coli W3110-BL. The regulation of citrate synthase and oxidative phosphorylation pathway was proposed to be important for overproduction of L-Met. These foundations provide helpful reference in the following metabolic modification or fermentation control for further improvement of L-Met biosynthesis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|