Autor: |
Mengyuan Wu, Tingting Hu, Ping Zhu, Moussa Ide Nasser, Jie Shen, Fang Sun, Qingnan He, Mingyi Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Genes and Diseases, Vol 9, Iss 3, Pp 585-597 (2022) |
Druh dokumentu: |
article |
ISSN: |
2352-3042 |
DOI: |
10.1016/j.gendis.2021.01.003 |
Popis: |
Kidney disease has become a global public health problem affecting over 750 million people worldwide and imposing a heavy economic burden on patients. The complex architecture of the human kidney makes it very difficult to study the pathophysiology of renal diseases in vitro and to develop effective therapeutic options for patients. Even though cell lines and animal models have enriched our understanding, they fail to recapitulate key aspects of human kidney development and renal disease at cellular and functional levels. Organoids can be derived from either pluripotent stem cells or adult stem cells by strictly regulating key signalling pathways. Today, these self-differentiated organoids represent a promising technology to further understand the human kidney, one of the most complex organs, in an unprecedented way. The newly established protocols improved by organ-on-chip and coculture with immune cells will push kidney organoids towards the next generation. Herein, we focus on recent achievements in the application of kidney organoids in disease modelling, nephrotoxic testing, precision medicine, biobanking, and regenerative therapy, followed by discussions of novel strategies to improve their utility for biomedical research. The applications we discuss may help to provide new ideas in clinical fields. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|