L2MXception: an improved Xception network for classification of peach diseases

Autor: Na Yao, Fuchuan Ni, Ziyan Wang, Jun Luo, Wing-Kin Sung, Chaoxi Luo, Guoliang Li
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Plant Methods, Vol 17, Iss 1, Pp 1-13 (2021)
Druh dokumentu: article
ISSN: 1746-4811
DOI: 10.1186/s13007-021-00736-3
Popis: Abstract Background Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are imbalance. The popular deep networks perform poor for this issue. Results This paper proposed an improved Xception network named as L2MXception which ensembles regularization term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep learning models were compared in details and an improved loss function was integrated with regularization term L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the current best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of L2MXception was up to 93.85%, increased by 28.48%. Conclusions The proposed L2MXception network may have great potential in early identification of peach diseases.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje