Autor: |
Zoltan Szucs, James Joseph, Tim J. Larkin, Bangwen Xie, Sarah E. Bohndiek, Kevin M. Brindle, André A. Neves |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Breast Cancer Research, Vol 23, Iss 1, Pp 1-11 (2021) |
Druh dokumentu: |
article |
ISSN: |
1465-542X |
DOI: |
10.1186/s13058-021-01404-z |
Popis: |
Abstract Background Ductal carcinoma in situ (DCIS) is a non-invasive form of early breast cancer, with a poorly understood natural history of invasive transformation. Necrosis is a well-recognized adverse prognostic feature of DCIS, and non-invasive detection of its presence and spatial extent could provide information not obtainable by biopsy. We describe here imaging of the distribution and extent of comedo-type necrosis in a model of human DCIS using C2Am, an imaging agent that binds to the phosphatidylserine exposed by necrotic cells. Methods We used an established xenograft model of human DCIS that mimics the histopathological features of the disease. Planar near-infrared and optoacoustic imaging, using fluorescently labeled C2Am, were used to image non-invasively the presence and extent of lesion necrosis. Results C2Am showed specific and sensitive binding to necrotic areas in DCIS tissue, detectable both in vivo and ex vivo. The imaging signal generated in vivo using near-infrared (NIR) fluorescence imaging was up to 6-fold higher in DCIS lesions than in surrounding fat pad or skin tissue. There was a correlation between the C2Am NIR fluorescence (Pearson R = 0.783, P = 0.0125) and optoacoustic signals (R > 0.875, P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|